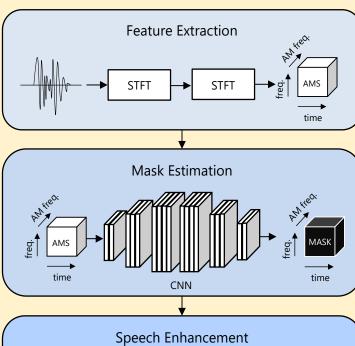
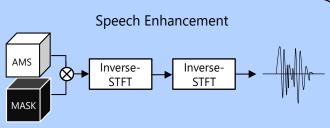


CNN-based Speech Enhancement by using Amplitude Modulation Spectrogram

Backgrounds

- Voice chat and Video Meeting is commonly used in our lives.
- Strong noises from outside can interfere with speech intelligibility.
- Conventional methods could not suppress strong noises efficiently.


Related Works


- Time-Frequency spectrogram estimation with Convolutional Neural Network (CNN) [1] is one of the modern speech enhancement methods.
- Amplitude Modulation (AM) features of speech signals could be effective hints to suppress noisy signals [2].
- Human Auditory System uses Amplitude Modulation features to percept various sounds from a mixture source [3].

Objective

Improve speech quality in noisy sources by using Deep Learning-based speech enhancement with AM features.

Proposed Method

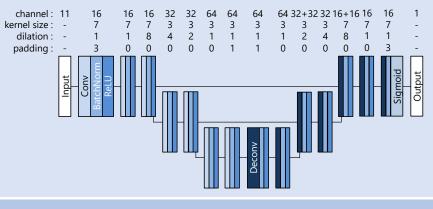
- We utilize Amplitude Modulation Spectrogram (AMS).
- A couple of Short-Time Fourier Transformation (STFT) processes generate AMS from noisy speech waveform.
- CNN estimates mask to extract speech components from noisy AMS.

Discussion

- AM feature is effective for speech enhancement in noisy conditions where input SNR is under 0 dB.
- CNN could estimate masks on the AMS feature map, however, there is room for improvement.

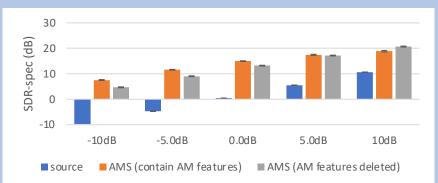
Future Work

 Apply our method to many kinds of noise and inspect how AM features affect mask estimation with CNN.


* Masaki Wakabayashi Email : mf21140@shibaura-it.ac.jp Graduate School of Engineering and Science Shibaura Institute of Technology, Japan

Experiment Setup

- Using VCTK version.0.92 dataset [4].
 - 5000 utterances for training
 - 200 utterances for validation
 - 200 utterances for testing
- For the training set, add a random amount of white noise whose Signal-to-Noise Ratio (SNR) is between -10dB and 10dB .
- Parameters to generate AMS


	frame length	hop length	zero-padding
1st STFT	256 (16ms)	32 (2ms)	0
2nd STFT	32 (64ms)	4 (8ms)	224

CNN Architecture for the Mask Estimation

Results

Evaluation results of enhanced speech by Source-to-Distortion Ratio (SDR)

Evaluation results of enhanced speech by Short-Time Objective Intelligibility measure (STOI)

References

 Y. Xu, et. al., "A Regression Approach to Speech Enhancement Based on Deep Neural Networks," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, no. 1, pp. 7-19, 2015.
K. Fujioka, et. al., "A Noise Reduction Method of Speech Signals Using Running Spectrum Filtering," The IEICE Transactions D, vol. J88-D2, no. 4, pp. 695-703, 2005.

 [3] B. Moore, "An Introduction to the Psychology of Hearing - Sixth Edition," Brill Academic Pub, 2013.
[4] J. Yamagishi, et. al., "CSTR VCTK Corpus: English Multi-speaker Corpus for CSTR Voice Cloning Toolkit (version 0.92)," University of Edinburgh. The Centre for Speech Technology Research (CSTR), 2019.

Authors Information

Kazunori Mano

Graduate School of Engineering and Science Shibaura Institute of Technology, Japan